Optimally Discriminant Moments for Speckle Detection in Real B-Scan Images
نویسندگان
چکیده
The paper presents and evaluates a speckle detection method for B-scan images. This is a fully automatic method and does not require information about the sensor parameters, which is often missing in retrospective studies. The characterization and posterior detection of speckle noise in ultrasound (US) has been regarded as an important research topic in US imaging, for improving signal-to-noise ratio by removing speckle noise and for exploiting speckle correlation information. Most of the existing methods require either manual intervention, the need to know sensor parameters or are based on statistical models which often do not generalize well to B-scans of different imaging areas. The proposed method aims to overcome those limitations. The main novelty of this work is to show that speckle detection can be improved based on finding optimally discriminant low order speckle statistics. In addition, and in contrast with other approaches the presented method is fully automatic and can be efficiently implemented to B-scan images. The method detects speckle patches using an ellipsoid discriminant function which classifies patches based on features extracted from optimally discriminant low order moments of the uncompressed intensity B-scan information. In addition, if the uncompressed signal is not available, we propose and evaluate a method for the estimation of this factor. The computation of low order moments using an optimality criteria, the decompression factor estimation and other key aspects of the method are quantitatively evaluated using both simulated and real (phantom and in vivo) data. Speckle detection results are obtained using again phantom and in vivo studies which show the validity of our approach. In addition, speckle probability images (SPI) are presented which provide valuable information about the distribution of speckle and non-speckle areas in an image. The presented evaluation and results show the effectiveness of our approach. In particular, the need for using discriminant analysis to determine the optimal discriminant power of the statistical moments and that this optimal value strongly depends on the characteristics and imaged tissues in the B-scan data.
منابع مشابه
Speckle Detection in Ultrasound Images Using First Order Statistics
It is necessary to identify speckled regions in ultrasound images to control adaptive speckle suppression algorithms, for tissue characterisation, and to estimate the elevational separation of B-scans by speckle decorrelation. Previous authors have proposed classification techniques based on second order powers of the homodyned k-distribution, or lower order powers of the more limited k-distrib...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملImproved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel
In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded ...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution
Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2007